Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Stomatology ; (12): 68-74, 2023.
Artículo en Chino | WPRIM | ID: wpr-970757

RESUMEN

Enamel formation is a series of complex physiological processes, which are regulated by critical genes spatially and temporally. These processes involve multiple developmental stages covering ages and are prone to suffer signal interference or gene mutations, ultimately leading to developmental defects of enamel (DDE). Epigenetic modifications have important regulatory roles in gene expression during enarnel development. New technologies including high-throughput sequencing, chromatin immunoprecipitation sequencing (ChIP-seq), and DNA methylation chip are emerging in recent years, making it possible to establish genome-wide epigenetic modification profiles during developmental processes. The regulatory role of epigenetic modification with spatio-temporal pattern, such as DNA methylation, histone modification and non-coding RNA, has significantly expanded our understanding of the regulatory network of enamel formation, providing a new theoretical basis of clinical management and intervention strategy for DDE. The present review briefly describes the enamel formation process of human beings' teeth as well as rodent incisors and summarizes the dynamic characteristics of epigenetic modification during enamel formation. The functions of epigenetic modification in enamel formation and DDE are also emphatically discussed.


Asunto(s)
Humanos , Epigénesis Genética , Defectos del Desarrollo del Esmalte , Metilación de ADN , Análisis de Secuencia por Matrices de Oligonucleótidos , Esmalte Dental
2.
International Journal of Oral Science ; (4): 27-27, 2019.
Artículo en Inglés | WPRIM | ID: wpr-772258

RESUMEN

Bone remodelling keeps going through the lifespan of human by bone formation and bone resorption. In the craniofacial region, mandibles act as the main force for biting and chewing, and also become susceptible to a common bone-loss disease, namely, apical periodontitis, once infected dental pulp is not treated timely, during which bone resorption occurs from the apical foramen to the apical bone area. Although conventional root canal treatment (RCT) can remove the most of the infection, chronical apical periodontitis due to incomplete removal of dental pulp and subsequent microleakage will become refractory and more challenging, and this process has scarcely been specifically studied as a bone remodelling issue in rat models. Therefore, to study chronical and refractory apical periodontitis owing to incomplete cleaning of infected dental pulp and microleackage in vivo, we establish a modified rat model of gradually progressive apical periodontitis by sealing residual necrotic dental pulp and introducing limited saliva, which simulates gradually progressive apical periodontitis, as observed in the clinical treatment of chronical and refractory apical periodontitis. We show that bone-loss is inevitable and progressive in this case of apical periodontitis, which confirms again that complete and sound root canal treatment is crucial to halt the progression of chronical and refractory apical periodontitis and promote bone formation. Interestingly, bone remodelling was enhanced at the initial stage of apical periodontitis in this model while reduced with a high osteoblast number afterwards, as shown by the time course study of the modified model. Suggesting that the pathological apical microenvironment reserve its hard tissue formation ability to some degree but in a disturbed manner. Hopefully, our findings can provide insights for future bone regenerative treatment for apical periodontitis-associated bone loss.

3.
West China Journal of Stomatology ; (6): 437-441, 2017.
Artículo en Chino | WPRIM | ID: wpr-357472

RESUMEN

Odontogenesis is a consequence of a complex series of reciprocal signal interactions between odontogenic epithelium and neural crest-derived odontotgenic mesenchyme. These interactions result from a complex interplay of genetic and environmental factors. Given that a fetus develops in the mother, maternal health and environmental exposures have a great influence on tooth development. In this review, we focused on the key issues in the developmental defects of teeth induced by various types of maternal environmental factors, including environmental endocrine disruptors, joint action of two or more chemical exposures, and maternal health status. This review also discussed the adverse effects of maternal environmental factors on tooth development. These effects include enamel developmental defects, molar incisor hypomineralization, dental fluorosis, hyperdontia and hypodontia. Overall, this review provides a theoretical basis for the prevention of tooth defects in early life, assessment of risks from developmental tooth defects, and advancement of pediatric oral health management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA